Mice expressing a humanized form of VEGF-A may provide insights into the safety and efficacy of anti-VEGF antibodies.

نویسندگان

  • Hans-Peter Gerber
  • Xiumin Wu
  • Lanlan Yu
  • Christian Wiesmann
  • Xiao Huan Liang
  • Chingwei V Lee
  • Germaine Fuh
  • Christine Olsson
  • Lisa Damico
  • David Xie
  • Y Gloria Meng
  • Johnny Gutierrez
  • Racquel Corpuz
  • Bing Li
  • Linda Hall
  • Linda Rangell
  • Ron Ferrando
  • Henry Lowman
  • Franklin Peale
  • Napoleone Ferrara
چکیده

VEGF-A is important in tumor angiogenesis, and a humanized anti-VEGF-A monoclonal antibody (bevacizumab) has been approved by the FDA as a treatment for metastatic colorectal and nonsquamous, non-small-cell lung cancer in combination with chemotherapy. However, contributions of both tumor- and stromal-cell derived VEGF-A to vascularization of human tumors grown in immunodeficient mice hindered direct comparison between the pharmacological effects of anti-VEGF antibodies with different abilities to block host VEGF. Therefore, by gene replacement technology, we engineered mice to express a humanized form of VEGF-A (hum-X VEGF) that is recognized by many anti-VEGF antibodies and has biochemical and biological properties comparable with WT mouse and human VEGF-A. The hum-X VEGF mouse model was then used to compare the activity and safety of a panel of VEGF Mabs with different affinities for VEGF-A. Although in vitro studies clearly showed a correlation between binding affinity and potency at blocking endothelial cell proliferation stimulated by VEGF, in vivo experiments failed to document any consistent correlation between antibody affinity and the ability to inhibit tumor growth and angiogenesis in most animal models. However, higher-affinity antibodies were more likely to result in glomerulosclerosis during long-term treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice

Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...

متن کامل

Induction of humoral immune responses and inhibition of metastasis in mice by a VEGF peptide-based vaccine

Objective(s): Blocking of vascular endothelial growth factor (VEGF) plays a pivotal role in inhibition of metastasis and is a target for development of anti-angiogenic agents. In this study, a peptide-based vaccine was designed and its potential for induction of humoral immune responses, generation of neutralizing antibodies, inhibition of tumor growth and metastasis w...

متن کامل

Design of a humanized anti vascular endothelial growth factor nanobody and evaluation of its in vitro function

Objective(s): Nanobodies, the single domain antigen binding fragments of heavy chain-only antibodies occurring naturally in camelid sera, are the smallest intact antigen binding entities. Their minimal size assists in reaching otherwise largely inaccessible regions of antigens. However, their camelid origin raises a possible concern of immunogenicity when used for human therapy. Humanization is...

متن کامل

Tumor accumulation of radiolabeled bevacizumab due to targeting of cell- and matrix-associated VEGF-A isoforms.

PURPOSE Vascular endothelial growth factor-A (VEGF-A) is one of the most important factors inducing angiogenesis in tumors. Nine splice-variant isoforms of VEGF-A have been identified, each having different properties. Recently, we showed that radiolabeled anti-VEGF monoclonal antibody, bevacizumab, accumulates specifically in VEGF-A expressing tumors. In this study, we investigated in a nude m...

متن کامل

Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders.

Vascular endothelial growth factor (VEGF) is a major mediator of angiogenesis associated with tumors and other pathological conditions, including proliferative diabetic retinopathy and age-related macular degeneration. The murine anti-human VEGF monoclonal antibody (muMAb VEGF) A.4.6.1 has been shown to potently suppress angiogenesis and growth in a variety of human tumor cells lines transplant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 9  شماره 

صفحات  -

تاریخ انتشار 2007